我们提出了Covy - 一个机器人平台,可在Covid-19等大流行期间促进社会疏远。Covy具有一种新颖的复合视觉系统,使其能够检测到社会距离的破坏,最多可达16m。Covy使用混合导航堆栈自动地导航其周围环境,该堆栈结合了深钢筋学习(DRL)和概率定位方法。我们通过模拟和现实环境中的大量实验构建了完整的系统并评估了Covy的性能。除其他外,我们的结果表明,与基于DRL的纯解决方案相比,混合导航堆栈更强大。
translated by 谷歌翻译
Masked Language Modeling (MLM) has proven to be an essential component of Vision-Language (VL) pretraining. To implement MLM, the researcher must make two design choices: the masking strategy, which determines which tokens to mask, and the masking rate, which determines how many tokens to mask. Previous work has focused primarily on the masking strategy while setting the masking rate at a default of 15\%. In this paper, we show that increasing this masking rate improves downstream performance while simultaneously reducing performance gap among different masking strategies, rendering the uniform masking strategy competitive to other more complex ones. Surprisingly, we also discover that increasing the masking rate leads to gains in Image-Text Matching (ITM) tasks, suggesting that the role of MLM goes beyond language modeling in VL pretraining.
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
A major challenge in machine learning is resilience to out-of-distribution data, that is data that exists outside of the distribution of a model's training data. Training is often performed using limited, carefully curated datasets and so when a model is deployed there is often a significant distribution shift as edge cases and anomalies not included in the training data are encountered. To address this, we propose the Input Optimisation Network, an image preprocessing model that learns to optimise input data for a specific target vision model. In this work we investigate several out-of-distribution scenarios in the context of semantic segmentation for autonomous vehicles, comparing an Input Optimisation based solution to existing approaches of finetuning the target model with augmented training data and an adversarially trained preprocessing model. We demonstrate that our approach can enable performance on such data comparable to that of a finetuned model, and subsequently that a combined approach, whereby an input optimization network is optimised to target a finetuned model, delivers superior performance to either method in isolation. Finally, we propose a joint optimisation approach, in which input optimization network and target model are trained simultaneously, which we demonstrate achieves significant further performance gains, particularly in challenging edge-case scenarios. We also demonstrate that our architecture can be reduced to a relatively compact size without a significant performance impact, potentially facilitating real time embedded applications.
translated by 谷歌翻译
Graph representation of objects and their relations in a scene, known as a scene graph, provides a precise and discernible interface to manipulate a scene by modifying the nodes or the edges in the graph. Although existing works have shown promising results in modifying the placement and pose of objects, scene manipulation often leads to losing some visual characteristics like the appearance or identity of objects. In this work, we propose DisPositioNet, a model that learns a disentangled representation for each object for the task of image manipulation using scene graphs in a self-supervised manner. Our framework enables the disentanglement of the variational latent embeddings as well as the feature representation in the graph. In addition to producing more realistic images due to the decomposition of features like pose and identity, our method takes advantage of the probabilistic sampling in the intermediate features to generate more diverse images in object replacement or addition tasks. The results of our experiments show that disentangling the feature representations in the latent manifold of the model outperforms the previous works qualitatively and quantitatively on two public benchmarks. Project Page: https://scenegenie.github.io/DispositioNet/
translated by 谷歌翻译
Existing metrics for evaluating the quality of automatically generated questions such as BLEU, ROUGE, BERTScore, and BLEURT compare the reference and predicted questions, providing a high score when there is a considerable lexical overlap or semantic similarity between the candidate and the reference questions. This approach has two major shortcomings. First, we need expensive human-provided reference questions. Second, it penalises valid questions that may not have high lexical or semantic similarity to the reference questions. In this paper, we propose a new metric, RQUGE, based on the answerability of the candidate question given the context. The metric consists of a question-answering and a span scorer module, in which we use pre-trained models from the existing literature, and therefore, our metric can be used without further training. We show that RQUGE has a higher correlation with human judgment without relying on the reference question. RQUGE is shown to be significantly more robust to several adversarial corruptions. Additionally, we illustrate that we can significantly improve the performance of QA models on out-of-domain datasets by fine-tuning on the synthetic data generated by a question generation model and re-ranked by RQUGE.
translated by 谷歌翻译
The meaningful use of electronic health records (EHR) continues to progress in the digital era with clinical decision support systems augmented by artificial intelligence. A priority in improving provider experience is to overcome information overload and reduce the cognitive burden so fewer medical errors and cognitive biases are introduced during patient care. One major type of medical error is diagnostic error due to systematic or predictable errors in judgment that rely on heuristics. The potential for clinical natural language processing (cNLP) to model diagnostic reasoning in humans with forward reasoning from data to diagnosis and potentially reduce the cognitive burden and medical error has not been investigated. Existing tasks to advance the science in cNLP have largely focused on information extraction and named entity recognition through classification tasks. We introduce a novel suite of tasks coined as Diagnostic Reasoning Benchmarks, DR.BENCH, as a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability. The suite includes six tasks from ten publicly available datasets addressing clinical text understanding, medical knowledge reasoning, and diagnosis generation. DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models. Experiments with state-of-the-art pre-trained generative language models using large general domain models and models that were continually trained on a medical corpus demonstrate opportunities for improvement when evaluated in DR. BENCH. We share DR. BENCH as a publicly available GitLab repository with a systematic approach to load and evaluate models for the cNLP community.
translated by 谷歌翻译
与其2D图像对应物相比,3D点云数据上的零射击学习是一个相关的未置换问题。 3D数据由于不可用的预训练特征提取模型而带来了ZSL的新挑战。为了解决这个问题,我们提出了一种及时引导的3D场景生成和监督方法,该方法可以增强3D数据以更好地学习网络,从而探索可见和看不见的对象的复杂相互作用。首先,我们以提示描述的某些方式合并了两个3D模型的点云。提示的行为就像描述每个3D场景的注释一样。后来,我们进行对比学习,以端到端的方式培训我们所提出的建筑。我们认为,与单​​个对象相比,3D场景可以更有效地关联对象,因为当对象出现在上下文中时,流行的语言模型(如Bert)可以实现高性能。我们提出的及时引导场景生成方法封装了数据扩展和基于及时的注释/字幕,以提高3D ZSL性能。我们已经在合成(ModelNet40,ModelNet10)和实扫描(ScanoJbectnn)3D对象数据集上实现了最新的ZSL和广义ZSL性能。
translated by 谷歌翻译
VQ(供应商资格)和IOQ(安装和操作资格)审核在仓库中实施,以确保在履行网络中翻转所有设备都符合质量标准。如果在短时间内进行许多检查,则可能会跳过审核检查。此外,探索性数据分析揭示了对相同资产进行类似检查的几个实例,从而重复了这项工作。在这项工作中,通过识别相似性和重复项,将自然语言处理和机器学习应用于仓库网络的大型清单数据集,并预测具有较高传递率的非批评性数据集。该研究建议ML分类器识别具有IOQ和VQ的高传递概率的检查,并将优先级分配给检查,以便在无法执行所有检查的时间时优先考虑。这项研究建议使用基于NLP的BLAZINGTEXT分类器以高速率进行清单,这可以降低检查的10%-37%,并大大降低成本。应用的算法超过了随机森林和神经网络分类器,并在90%的曲线下达到了一个区域。由于数据不平衡,使用F1分数对模型的准确性产生了积极影响,从8%提高到75%。此外,提出的重复检测过程确定要修剪的17%可能的冗余支票。
translated by 谷歌翻译
神经风格转移是一种强大的计算机视觉技术,可以将一个图像的艺术“样式”纳入另一个图像的“内容”。该方法背后的基本理论取决于以下假设:图像的样式由其特征的革兰氏矩阵表示,该矩阵通常是从预先训练的卷积神经网络(例如VGG-19)中提取的。这个想法并不能直接扩展到时间序列风格化,因为二维图像的样式概念与一维时间序列的样式概念不类似。在这项工作中,提出了一种新颖的时间序列样式转移的表述,以实现合成数据的生成和增强。我们介绍了时间序列的程式化功能的概念,该功能与时间序列现实主义属性直接相关,并提出了一种新型的风格化算法,称为STYLETIME,该算法使用明确的功能提取技术来结合一个时间序列的基础内容(趋势)带有另一个样式(分销属性)。此外,我们讨论了评估指标,并将我们的工作与现有的最新时间序列生成和增强方案进行比较。为了验证我们的方法的有效性,我们使用风格化的合成数据作为数据增强的手段,以提高几个预测任务上经常性神经网络模型的性能。
translated by 谷歌翻译